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The equations governing two-dimensional turbulence are written as an infinite 
system of ordinary differential equations, in which the dependent variables are 
the coeficients in the expansion of the vorticity field in a double Fourier series. 
The variables are sorted into sets which correspond to consecutive bands in the 
wavenumber spectrum; within each set it  is supposed that the separate variables 
will exhibit statistically similar behaviour. A low order model is then constructed 
by retaining only a few variables within each set. Multiplicative factors are 
introduced into the equations to compensate for the reduced number of terms in 
the summations. Like the original equations, the low order equations conserve 
kinetic energy and enstrophy, apart from the effects of external forcing and 
viscous dissipation. 

A special case is presented in which the bands are half octaves and there is 
effectively only one dependent variable per set. Solutions of these equations are 
compared with conventional numerical simulations of turbulence, and agree 
reasonably well, although the nonlinear effects are somewhat underestimated. 

1. Introduction 
Turbulence, or more specifically an ensemble of time-dependent fields of 

turbulent motion, constitutes a process. A particular member of any such 
ensemble constitutes a realization of the process. A characteristic feature of 
turbulent motion is the simultaneous presence of eddies of many different sizes. 
This feature renders it impossible, when treating turbulence by mathematical 
techniques, to represent a realization by a relatively simple analytic function. 
By contrast, certain statistical properties of a turbulent process, such as the 
energy spectrum, often lack the irregularity of individual realizations and, if not 
expressible by the more familiar analytic functions, may at least be represented 
by rather simple smooth curves. Consequently many theoreticians concerned 
with turbulence have confined their attention to ensemble statistics, as a means 
of hd ing  order within apparent chaos. 

If we begin with the Navier-Stokes equations or some other equations which 
are assumed to govern the flow, we may in principle use either of two approaches 
in seeking the statistical properties. We may obtain a number of particular 
solutions, each representing a realization, and then compile statistics from them. 
Alternatively we may derive new equations whose unknowns are statistical 
properties and then solve the new equations. 

The former approach is rendered extremely cumbersome by the presence of 
35 F L M  55 
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motions of many scales. If the relevant motions cover s octaves of the spectrum, 
at  least 2"s numbers are needed to describe a realization of n-dimensional turbu- 
lence at  asingle instant (n = 2 or 3). Two-dimensional turbulence spanning twelve 
octaves, or three-dimensional turbulence spanning eight, is therefore well beyond 
the scope of today's most powerful computers, yet studies encompassing fewer 
octaves often cannot promise realistic results. In  the atmosphere, for example, 
which is a highly turbulent system, extratropical cyclones and cumulus clouds, 
both of which exert considerable influence upon the total motion, differ by about 
ten octaves in scale. 

In  the latter approach each pertinent statistical property can often be repre- 
sented by relatively few numbers, thanks to its rather smooth behaviour. The 
numerical description becomes particularly concise when the turbulence is homo- 
geneous and isotropic. The main difficulty stems from the nonlinearity of the 
governing equations, which inevitably causes any finite system of derived equa- 
tions with statistical properties as unknowns to contain more unknowns than 
equations. To increase the number of equations to the number of unknowns it is 
necessary to introduce some closure approximation. One of the best known of 
these is the quasinormal approximation, originally introduced by Millionsht- 
chikov (194 I), expressing fourth-degree statistical properties in terms of statistics 
of lower degree. More refined closure schemes include the original direct-inter- 
action approximation of Kraichnan (1959). These and other schemes have 
recently been reviewed by Orszag (1970). 

The basis for accepting or rejecting a closure approximation has frequently 
been not any a priori demonstration of suitability, but rather the results which 
have eventually been obtained when the scheme has been put to use. The quasi- 
normal approximation, for example, became discredited after Ogura (1963) 
demonstrated by numerical integration that it would lead to the physically 
impossible occurrence of negative kinetic energy in certain bands of the spec- 
trum. Thus, when one obtains a result using some particular closure scheme, the 
question always remains as to the extent to which the result has been deduced 
and the extent to which it has been implicitly presupposed in selecting the scheme. 

To eliminate the need for closure approximations one may return to the 
former approach, and deal with realizations. This procedure is indeed becoming 
more common, with the increasing availability of more powerful computers. 
Lilly (1969), for example, has represented a two-dimensional turbulent field by 
the values of a stream function at a grid of 64 x 64 points, and has obtained flow 
patterns which seem fairly realistic. However, his six-octave span falls far short 
of the ten or more octaves which one often wishes to cover. 

It is the purpose of this study to devise a means for representing realizations of 
turbulence with relatively few numbers while still retaining many octaves of the 
spectrum and to establish systems of equations governing these representations. 
The speed and capacity of present-day computers will then cease to be a limiting 
factor. Needless to say, the representations will have to be unrealistic in some 
respect other than the total spectral range. 

In  brief, we first represent a realization by a multiple Fourier series in space 
whose coefficients are functions of time alone. These coefficients become the 
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dependent variables in an inh i te  system of ordinary differential equations, 
derived from the original governing equations. We next divide the wavenumber 
spectrum into relatively narrow bands (e.g. half octaves). We then discard most 
of the variables corresponding to each band, retaining only a small number whose 
statistical behaviour is supposed to be representative of the behaviour of all the 
variables in that band. We attempt to compensate for the reduced number of 
terms in each equation by introducing suitable multiplicative factors. The author 
(1971b) has recently proposed that a scheme of this sort could be of value in 
investigating the predictability of turbulence, and has described some of the 
ingredients of a particular scheme. Although we shall deal only with two- 
dimensional turbulence in this study, there is no obvious reason why a similar 
scheme could not be used in three dimensions. 

2. The basic equations 
We shall &st introduce the basic equations, from which the special equations 

of this study will be derived. Since the same basic equations have appeared in 
numerous works, we shall simply state them, without detailed derivations. 

Consider the mechanically forced motion of a two-dimensional homogeneous 
incompressible viscous fluid of infinite horizontal extent. Such motion may be 
expressed in termsof thestream function @ or the vorticityV2@, and the governing 
equation may be written as 

a 
-V2$ at = - V$ x V(V2$) +- vV4$ + p, 

where t is time, v is the coefficient of kinematic viscosity and P is an external 
forcing function, which will serve to maintain the motion against the effects of 
viscosity. We use two-dimensional vector notation; V is the horizontal differential 
operator and the cross product is a scalar, which would be denoted by the vertical 
component of the cross product in three-dimensional notation. 

Let x and y denote distances in mutually perpendicular directions and let the 
motion be periodic in both the x and y directions, with a fundamental period 
2nD, where D is a large distance. The vorticity may then be expressed as the 
double Fourier series 

V2$ = C X 3  exp ( i D - V .  r), (2) 
3 

where r is the vector whose components are x and y, and the summation runs 
over all vectors J whose components J, and J, are both integers. It follows that 

where J denotes the magnitude of J. We shall refer to J and J as the wavenumber 
and the wave vector of X,.  The physical necessity for @ and V2$ to be real 
demands that 

x-J = xg, (4) 
35-2 
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where the asterisk denotes the complex conjugate. We may likewise let 

F = C.FJeXp(iD-'J.r), (5) 

where F-j = Ff. (6) 

J 

Upon substituting ( 2 )  and (5) into the linear terms in ( f ) ,  arid the complex 
conjugates of (2) and (3) into the nonlinear term, we obtain the spectral form of 
the governing equation: 

where the interaction coeficient C, is given by 

1 (8) 
-+(K-2-L-S)KxL if J + K + L  = 0, 

if J + K + L + O .  cam= [o 

The summation in ( 7 )  is written redundantly, i.e. terms containing XiX: and 
X i  Xi are added together. 

Prom ( 7 )  and (8) it follows that if a term containing XgX: appears with anon- 
vanishing coefficient in the equation governing X,, terms containing X,*X,* and 
XfXg generally appear in the equations governing X, and XL respectively. 
Equation (7) thus depicts the evolution of the field of motion as consisting, apart 
from the effects of forcing and viscosity, of a collection of interactions of triples 
of wave vectors (J, K, L) whose sum is zero, or, alternatively, interactions of 
triples of variables (X,, X,, XL). 

An alternative form of (8) is 

C m  = eJpL(K-2- L-2) A ( J ,  K ,  L) ,  (9) 
where 

A (  J, K ,  L )  = $[( J + K + L )  ( -  J + K + L )  ( J - K +  L )  (J+ K-L)]i (10) 

is the area of a triangle in wave-vector space with sides of lengths J ,  K and L,  and 

1 if J + K + L = O  and K x L < O ,  

% = {  0 if J + K + L + O  or K x L = O ,  ( 1 1 )  

- 1  if J + K + L = O  and K x L > O .  

It is evident that em is unaltered by a cyclic permutation of the indices, while 
a transposition changes it sign. It then follows readily from (9) that 

c,, = qlx, (12) 

cJgL+cKw+cLJg = 0, (13) 

(14) J-2Cm + K-*& + L - 2 C ,  = 0. 

The principal advantage of (9) over (8) is that, except for sign, i t  expresses C, 
in terms of the (scalar) wavenumbers of the interacting variables. 

The specific kinetic energy E and the enstrophy V are given by 

E = iV@.V@,  (15) 

v = 4(V2+)z, (16) 
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where the bar denotes an area average. In  spectral form (15) and (16) become 

Here also the summations are written redundantly, i.e. for a given J, terms con- 
taining X , X f  and X- jXFj  (i.e. X T X , )  are added together. 

It is well known that in the absence of external forcing and viscous dissipation 
equation ( l ) ,  and hence (7), conserves both E and V .  However, it is evident from 
(13) and (14) that in addition each interaction among three vectors J, K and L, 
together with the assured interaction among the vectors - J, - K and - L, 
individually conserves E and V .  The advantages of using wave-vector space in 
dealing with two-dimensional turbulence stem largely from this familiar result. 

3. Formulation of the low order equations 
As a first step in developing a low order model we shall divide the spectrum 

into bands, i.e. we shall sort the wave vectors J into sets So, S,, . . . according to 
their magnitudes. To do this we choose a resolution factor p > 1, and assign J or 
X ,  to the set Sj if pj-3 < J < pi+d. It is intended that p should be close enough to 
unity so that separate variables in the same set will represent features of com- 
parable scale, and may be expected to exhibit similar statistical behaviour. 

Equation (7) may now be rewritten as 

where the second summation runs over all wave vectors K and L belonging 
respectively to S, and 4. An important derived relation is 

Likewise, E and V may be rewritten as 

We shall denote the number of vectors J contained in Sj by ni, and the number 
of triples of interacting vectors (J, K, L) contained respectively in Sj, 8, and S, by 
qjM. In  defining nj and qiM, vectors J and - J are to be counted separately, as are 
triples (J, K,  L) and ( - J, - K, - L). If two sets are the same, say if k = I ,  triples 
(J, K, L) and (J, L, K) are to be counted separately unless K = L. Since qju can 
exceed neither nkn,, nor nlni, nor nink, we may let 

whence gj,, 6 1. 
qjkl = Cjkl(njnk%)', (23) 
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Given the sets 8, and S,, the number of terms added together in the second 
summation in (19) will differ for different variables X ,  in the same set S,, but on 
the average there will be n;lq,,cl such terms. If j ,  k and 1 are large this number may 
also be large. Suppose that in evaluating the second summation in (19) we 
accumulate these terms in a more or less random order. After we have added a 
relatively small number of terms together, we may be able to estimate the sum 
of all the terms, or perhaps at  least the general magnitude of the sum, more or less 
as one estimates the outcome of an election after a few votes have been counted. 

Accordingly, we shall introduce subsets R,, R,, . . . of So, S,, . . . . We shall denote 
the number of vectors J contained in R, by m,, and the number of triples of inter- 
acting vectors (J, K, L) contained respectively in R,, Rk and Rl by p j k l .  We may 
then let 

pjkl = pjdmjmkm1)', (24) 

r .  3 = m-ln 3 i' (25) 

Tjkl = Psi vjkl* (26) 

whence pjkl < 1. We shall also introduce the ratios 

As our principal modification, we now approximate (19) by 

where j is the index of the subset containing J, and approximate (21) and (22) by 

We thereby omit all reference to all wave vectors and the corresponding variables 
except those contained in R,, R,, . . . . Within each subset R, the behaviour of the 
retained variables is supposed to be representative of that of all the variables in 
Sj. The factor c, has been introduced into (28) and (29) in an effort to compensate 
for the reduction in the number of terms in the second summation from n, to mi. 
Likewise the factor bikl in (27) represents an attempt to compensate for the 
reduction in the average number of terms in the second summation from nT1qikl 
to mT1pjkl. The additional factor aj is included to compensate for a possible 
reduction in the number of terms contributing significantly to the first sum- 
mation, since, givenj, there may be pairs (k, 1) for which there are no interacting 
variables in R,, Rk and R,, and hence an empty second summation, even though 
there are interacting variables in S,, S, and S,. The remaining problem is to deter- 
mine suitable expressions for a,, bjkl and c,. 

We cannot expect that the fluctuations of the retained variables in a particular 
solution of the modified equation (27) will coincide with the fluctuations of the 
same variables in any solution of the original equation (19), nor even that the 
fluctuations of E and V in two such solutions will coincide. The most that we can 
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ask is that some of the statistical properties of the two solutions should be the 
same. Our choices for a5, bjkz and cj should therefore depend upon the manner in 
which we expect the separate terms in the summations in ( 7 ) ,  (17) and (18) to 
combine, 

We can distinguish two extreme types of behaviour. If the terms in asummation 
are all of one sign and thus have no tendency to cancel, we can make a good 
estimate of the sum of all the terms by multiplying the sum of the retained terms 
by the ratio of the total number of terms to the number of retained terms. If, 
on the other hand, terms of either sign are about equally common, we cannot 
readily estimate the total sum, but we can estimate the general magnitude of the 
total sum by multiplying the sum of the retained terms by the square-root of the 
above-mentioned ratio. We shall refer to the two types of behaviour as systematic 
and random. The possibility of somewhat intermediate behaviour should also be 
recognized. 

We shall therefore let 

cj = r3y (30) 

in (28) and (29), where we choose y = 1 if the assumed behaviour is completely 
systematic, but y = if it  is completely random. It is doubtful that any value of 
y is really appropriate for intermediate behaviour, but some value between 1 and + is probably preferable to either extreme. Likewise, our tentative choice for bjkl 
in ( 2 7 )  will be 

(31) 
bikl = (mjpjklnj -1 -1 a j k l ) p  = y ; + p - , r t P  7f,,l, 

where the same considerations as determine y are to determine p. We shall 
temporarily leave the exponents y and punspecified, so that the ensuing equations 
will be applicable to a number of possible choices. 

We also wish the modified equations to continue to conserve E and V in the 
absence of external forcing and viscous dissipation. According to (27), (28) and 
(29), this requires that 

c ja ib jk lJ-2CJI(L+ckakbkl jK-2CgW+czazbl jkL-2~ = 0, (32) 

c j  aj  bjklCJgG f Ckak bklj% + clalbZjkGKJ = 0, (33) 

for any three interacting vectors J, K and L contained in any three sets Rj, R, and 
Rl. Comparing (32) and (33) with (13) and (14), we find that 

C j U j b j ,  = Ckakbk,j = ClUlbljk.  (34) 

The proper choice for b,,cl must then depend upon the choice for aj,  whence the 
tentative choice (31) cannot be suitable in all cases. 

We shall presently offer a procedure for choosing aj;  meanwhile we shall assume 
that aj neither increases nor decreases systematically as j increases. It is evident 
that nj increases as p2j for large values ofj .  We shall assume that the subsets Rj 
have been chosen so that mi increases as a lower power of pj, whence ri also 
increases as a power of pj. 

As a choice for bikr which does not violate (34) and yet retains the essence of the 
tentative choice (31), we take bikz multiplied by a function of aj,  ah, a, and r j ,  r,, y, 
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j - 4  j j+4 

Ic 
FIGURE 1. A portion of the k ,  I plane. @, ( j ,  j )  ; - , K + L  = J (lower left), J + K  = L 
(upper) and J + L  = K (right), where J = pj, K = pk, L = p' andp = 4 2 .  Sinall squares 
formed by intersecting lines are of unit area, and the co-ordinates of central points of 
shaded small squares are ( j - 2 , j - l ) ,  ( j - l , j - 2 ) ,  ( j - l , j+l) ,  ( j+l, j- l) ,  ( j + l , j + 2 )  
and ( j + 2 , j + 1 ) .  

whichneither increases nor decreases systematically asj, k and 1 increase together. 
We can do this by letting 

b .  3kl = ( a i 2 q c a z ) i  (r;2r,yl)f(~-P)b'. 1 kl 

= aJ:lr;Y(aja,az)+ ( ~ ~ r , r ~ ) ~ ( ~ + ~  7fkl. (35) 

Choosing aj presents further problems. Whereas the separate variables within 
a band can be expected to exhibit somewhat similar statistical behaviour, 
variables in separate bands presumably cannot. Nevertheless, givenj, if for some 
k and 1 the interactions in (Xj, X,, 8,) are not represented by any interactions in 
(Rj ,  R,, Rz), the only way in which their effects can be represented would seem to 
be in terms of interactions in other triples of bands. 

A reasonably satisfactory procedure for choosing aj  is perhaps best described 
with the aid of a diagram. In figure 1 the horizontal co-ordinates are Ic and I, 
regarded as continuous variables. The central point is (j,j), wherej is an integer. 
The horizontal and vertical lines divide the k, 1 plane into squares of unit area, and 
the co-ordinates of the centres of the squares are integers. 

The equations of the heavy curves are p" +pz = pj, pj + pz = pk and pj +pk = pz. 
The region enclosed by these curves, which we shall call the interaction region, 
therefore contains the values of k and 1 for which none of the three quantities 
pj, pk and pz exceeds the sum of the other two, and for which interacting vectors 
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with magnitudes p i ,  p k  and p1 can therefore exist. Figure 1 has been drawn with 

The squares which intersect the interaction region are centred at  those points 
(k, 1) for which interactions in Sj, S, and S, exist. We shall denote the number of 
such squares by N;.  The shaded squares, all of which intersect the interaction 
region, are centred at  those points ( k , l )  for which at least one interaction in 
Rj, R, and Rl exists. We shall denote the number of such squares by Mi. In the 
particular case shown in figure 1, the squares are centred at (j- 2 , j  - 1),  
( j - l , j - 2 ) ,  ( j - l , j+ l ) ,  ( j+l , j - l ) ,  ( j + 1 7 j + 2 )  and ( j + 2 , j + l ) ,  i.e. all the 
retained interactions occur among triples of vectors occupying three consecutive 
bands. 

Although Mi may be finite, AT; is clearly infinite, and it is for this reason that 
we cannot let uj depend simply upon the ratio N;/M;. However, under the 
assumption that squares lying mostly outside the interaction region represent 
rather few interactions compared with nearby squares lying mainly inside the 
interaction region, we may let aj depend upon the ratio of the area of the inter- 
action region to the area of the shaded portion of the interaction region. 

We shall denote the latter area, which cannot exceed Mi,  by Mj. For any 
particular case Mj may be determined by direct measurement. Direct integration 
reveals that the area of the interaction region (extending to infinity in each 
direction) is 

We shall let 

p = 4 2 .  

I = +n2(lnp)-2. (36) 

a j  = ( H T ~ I ) ~ ,  (371 

where the considerations which govern the choices of y and p also govern the 
choice of CL. In  the case illustrated in figure 1, I = 41.1 and Mj = 5.8, whence 
U. 3 = (7*l )a .  

A further modification, less drastic than those already introduced, is suggested 
by the narrowness of the spectral bands. We replace J by p j  and, in evaluating 
cJKL,  we also replace K by pk and L by pl. If we now let 

while the governing equation (19) becomes 

m Ra, Ri 
(42) 

where Cik1 = (p-2k -p-2l) A ( p j ,  p k ,  p l )  (43) 

gjkz  = (uj uk uz)* (rj  rk T J @ ~ - Y ) T & ~ .  (44) 

d 
-5 = j g j k l  Cikl I; 
dt k , l = 0  K. L 

Yg YE - v D - ~ ~ ~ ~ Y  J + GJ7 

is a quantity which is evidently unaltered by adding the same integer toj ,  k and I ,  
and 
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It is noteworthy that the second summations in the expressions for E and V are 
now identical. 

There remains the choice of the exponents a, /3 and y. Turning to the summa- 
tions in (21) and (22), we see that every term is positive. To this extent, at least, 
the terms combine systematically. We therefore let y = 1. In  (19) the various 
terms in the second summation are in general complex, and considerations of 
sign are insufficient to determine whether the terms cancel or not. We therefore 
turn to the derived equation (20), where the terms are real. Here there is little 
indication that the terms are mainly of one sign, and we shall assume that the 
behaviour is random. We therefore let p = 4. Finally, we assume that the terms 
in the first summation in (20)) each consisting of an entire second summation, 
combine randomly. Hence we let cc = 6. 

The system is now complete, assuming that the subsets R,, R,, . . . have been 
specified. It must be admitted, however, that other choices of a, p and y might be 
preferable. In  (22), for example, the viscous term is always negative; if a particular 
variable X ,  is not directly forced, and if the solution has reached statistical 
equilibrium, positive terms must predominate over negative terms in the summa- 
tions and the behaviour is not entirely random. Possibly values of a: and /? 
exceeding Q are indicated. 

On the other hand, we may also demand that if two fields of vorticity are 
identical to one another, except that one is equal to the other ‘seen through a 
magnifying glass’ (features of equal magnitude but stretched horizontal scale), 
the fields should behave similarly, in the absence of forcing and viscosity. This 
implies that the low order equation (42) should be unaltered ifj, Ic and I are 
altered by the same integer. Assuming that aj does not increase or decrease withj, 
this can occur only if the factor containing rjr,ri in (44) drops out. The only 
allowable values of p and y for which this happens are /3 = Q and y = 1. Values of 
cc exceeding 4 still appear permissible. 

4. A very low order model 
In  order to demonstrate that appreciable savings in computation can result 

from using the low order equations, we must show that it is actually possible, for 
some appropriate resolution factorp, to choose reasonably small subsets R,, R,, . . . 
of So, S,, . . . while, nevertheless, retaining reasonably many interactions. We shall 
do this by exhibiting a particular choice. 

We have noted that nl is proportiona.1 to p2i for large values of j. Possibly the 
least drastic modification which would yet offer substantial computational 
advantages would be one in which mi increases less rapidly with j, perhaps 
as pi. In  the scheme which we shall present, however, mi does not increase with j 
at all. 

I n  describing the scheme it will be convenient to identify each wave vector J 
with the complex number J, + iJy. We begin by introducing the complex numbers 
xo = 1 and x1 = 1 + i, and, for j 2 0, letting 
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Jll 

-4 
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-8  -4 0 4 8 

J X  

FIGURE 2. A portion of the complex plane. Points (J,,J,) represent complex numbers 
J,+iJ,. 0 ,  i%,, for j = 0, ...) 6 and rn = 0, .. ., 3, corresponding to retained wave vectors 
in very low order model; 0, typical set of interacting vectors. Line segments COMeCt 
values of Z,, iZ,, -Zi, or -iZ, for consecutive values of j. 

We then let Rj consist of the four vectors corresponding to the complex numbers 
i%$, for rn = 0, . . . ,3.  We shall denote the variabIes corresponding to zj and izi by 
$ and Yi; those corresponding to - zi and - izj will then be Y; and Yi*. We shall 
likewise denote the values of GJ corresponding to zj and izj by Gj and Gi. 

Figure 2 shows the points in the complex plane corresponding to the 
vectors in the subsets R,, ..., R,. The points are seen to arrange themselves 
into four similar spirals. The points of each spiral are shown connected by line 
segments. 

Toshowthatthereisaresolutionfacto~pconsistentwithour choiceofR,,R,, . .., 
we note that the explicit solution of (45) is 

zj = aAi+bAg, (46) 

where A, and A, are the roots of the quadratic equation 

h2-h-i = 0 (47) 
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and a and b are constants chosen to make xo = 1 and z1 = 1 +i. If 

h, = &[ 1 + (1 + 4i)*] (48) 

is the root whose absolute value exceeds unity, the right-hand side of (46) is 
closely approximated by its first term, for larger values of j. The appropriate 
value of p is therefore 

(49) p = \All = ~ { 1 + 2 / 1 7 + [ 2 ( 1 + 2 / 1 7 ) ] ~ } ~  = 1.443. 

This is close to the value 2/2 used in constructing figure 1. Since half-octave 
resolution is very convenient, we shall make a further approximation by letting 
p = 4 2  when computing the coefficients in (42) .  

It is evident from (45) that for any value o f j  the vectors corresponding to the 
numbers zj+,, - - z ~ + ~  and - iz j  interact, as do the vectors corresponding to the 
products of these numbers with i, - 1 or - i. From figure 2 it appears that there 
are also four interactions each involving two vectors in R, and one in R,, but we 
shall omit these from our system, whereupon all the retained interactions are 
among vectors in three consecutive bands. This is precisely the situation 
illustrated in figure 1. 

I f  now k = j + 1 and 1 = j + 2 ,  it  follows that p j k l  = 4 for all values of j. By 
definition of the subsets, mj = 4. Hence pjkl = a. The values of qjkl and nj and 
hence aikl may easily be found by a direct count, even for rather large values o f j  
if a €ast enough computer is used. We find that ajkl approaches a limit of about 
0.19 a s j  -f co, and we shall use this value for all values of j. Thus T~~~ = 0.76. As 
we noted in discussing figure 1, a reasonably satisfactory choice for aj for large 
values o f j  is (7.1)" = 2.67, and we shall use this value for allj.  It follows that 

Again for k = j + 1 and 1 = j + 2, it  follows from (43) and (10) that Ci,, = &47,  
while CLlj = - 3Cik, and Cg, = 2CiIc,. Finally, if J, K, and L are any interacting 
vectors in Rj, Rk and Rl, em = + 1. Assembling these results, we find that the 
governing equation (42) may be written as 

qjkl = 2.34. 

where a reasonably suitable value for c is g, if a = 8. An otherwise unneeded factor 
of 2 enters c because the sums in (50) and (51) are not redundant. It is to be 
understood that q. and Y; vanish i f j  < 0. 

We close this demonstration with a non-trivial special case of (50) and (51) 
which is even simpler than the general case. Suppose that, for eachj, Gj and G; 
are real and equal, while q and Yi are real and equal initially. In  this event 5 and 
Yiremain real and equal. Physically this restriction implies that the flow pattern, 
which is already periodic in x and y, is left unaltered by a rotation about the 
origin through a right angle. 

For this case alone it is convenient to let yj = 2 q  and gj = 2Gj. The behaviour 
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in thejth band is now represented by the sing1e:real variable yj, and E and V are 
now given by 

i m  I -- v = - c y;, 
2 , = 0  

while (50) and (51) reduce to 

m 

(53) 

where c,, = *c may be taken as 8. To solve (54) numerically we must further 
truncate the system by letting yi = 0 whenj exceeds some integer N ,  but E and V 
are still conserved by each interaction. 

5. Comparison with an accurate numerical simulation 
In  order to  gain some idea as to the adequacy of the low order models, we shall 

compare some numerical solutions of the very low order equations with more 
conventional numerical simulations of turbulence. The solution which we have 
chosen for comparison represents decaying two-dimensional turbulence, and was 
obtained by Fox (1972). The computational procedure, proposed by Orszag 
(1971), involves representing the field of motion in wavenumber space, retaining 
all components of scalar wavenumber less than 32, and also in physical space, 
using a grid of 64 x 64 points. Within each time step the linear operations, 
including inversion of V2, are performed in wavenumber space, while the 
multiplications are performed in physical space. Between these operations one 
transforms back and forth from one space to the other, using fast Fourier 
transform procedures. 

The particular numerical simulation which we shall attempt to reproduce uses 
a relatively large viscosity V D - ~  = 0.01 units, and is considered 'accurate' in the 
sense that the statistical properties of the solution are not affected by the trunca- 
tion at  a wavenumber of 32. That is, the bulk of the enstrophy dissipation occurs 
at  wavenumbers considerably less than 32 and, presumably, if still higher wave- 
numbers had been retained, the corresponding variables would have remained 
so close to zero that any interactions involving them would not have significantly 
affected the lower wavenumbers. 

To facilitate the comparison we have redrawn Fox's spectra with an ordinate of 
mean-square vorticity per half octave (on a logarithmic scale). Figure 3 shows 
his spectra at  t = 0 and also a t  t = 2.32, the time which he chose for discussion. 
Also shown is the spectrum which would have resulted at  t = 2.32 if the nonlinear 
terms had been absent; we shall call this the linear-decay spectrum. The difference 
between the spectra at t = 2-32 represents the cumulative influence of the non- 
l inea processes, which clearly is a transfer of enstrophy from the intermediate 
scales, which initially contain the bulk of the enstrophy, to the larger and smaller 
scales. 

In our attempt to reproduce these results with the very low order model, we 
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FIGURE 3. Initial spectrum (thin solid curve), spectrum at t = 2.32 (heavy solid curve) 
and linear-decay spectrum at t = 2-32 (dotted curve) in numerical simulation of decaying 
turbulence by Fox (1972). Segments labelled 0, - 3, and - 6 indicate slopes which curve 
would have if energy per wavenumber varied as 0, - 3 and - 6 power, respectively, of the 
wavenumber. 

t Yo Yi Ya Y3 Y4 

0.00 0.13 0.27 0.56 1.72 4.68 
0.48 0.24 0.61 1.81 1.00 4.63 
0.96 0.34 -0.15 1.62 -2.70 -0.89 
1.44 0.18 -0.61 1.65 1.66 -3.16 
1.92 0.09 0.02 1.44 3.11 0.67 
2.40 0.19 0.48 1.88 0.38 3.34 
2.88 0.27 -0.10 1.38 -2.41 2.30 

Y5 

6.68 
- 1.24 
- 4.73 
- 2.70 
- 2.09 
- 0.66 - 0.45 

Ye YT 
5-31 1-00 
4.91 0.31 

-2.18 -0.26 
2.49 -0.45 
1.67 -1.39 

-0.61 -0.87 
-0.83 -0.41 

Ys Y9 YlO 

0.01 0.00 0.000 
2.21 0.51 0.093 
0.63 -0.10 -0.003 
0.16 0.00 0.000 

-0.51 0.06 -0.001 
-0.18 0.05 -0.001 

0.04 0.00 0.000 

TABLE I. Particular solution of the very low order equations, with 
V D - ~  = 0.01 and no external forcing 

have used eleven variables yo, . . ., ylo, representing wavenumbers from 1 to 32. 
The initial values of y3 were simply read from the initial-state spectrum; this gave 
initial values of 1-86 and 49.5 for E and ?', as compared to Fox's values of 1-81 
and 50.1. In  our first experiment the initial values of yj were the positive square- 
roots of y$. For time differencing we used the 4-cycle form of the N-cycle scheme 
recently presented by the writer (1971 a). The basic time increment At was chosen 
as 0.12, after some experimentation showed that reducing At to smaller values did 
not appreciably affect the results. Table 1 shows the values of the eleven variables 
a t  intervals of four time steps, up to the 24th step. 
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FIGURE 4. Mean-square vorticity per half octave averaged from t = 1.92 to t = 2-76 [solid 
circles), obtained from 16 different solutions of the very low order equations with c,, = 8, 
compared with spectrum at t = 2.32 (solid curve) taken from figure 3. 

The squares of the values of y, at t = 2.40 might be considered a first attempt to 
reproduce the accurate spectrum for t = 2.32. While there is some order-of- 
magnitude agreement, the variation of yj" withj is obviously far too erratic. This 
behaviour is to be expected in a model where one variable must singly represent 
the behaviour of many components. In  general the variables yj change sign as 
time evolves, and it is likely that at any particular time some variables will be 
near their zero crossings, while others will be near their peaks. Thus the value 
y i  = 0.14 a t  t = 2.40 falls far short of the appropriate value of 3.5 indicated in 
figure 3, while the value yz = 11-2 exceeds the proper value of 4.0. To some extent 
we can reduce this difficulty by averaging yj" over several successive time steps, 
but to perform a proper simulation with the very low order model we should work 
with a collection of solutions. 

Accordingly we have determined 16 solutions of (54). The initial values of y;, 
and hence the initial spectrum, are the same in all cases, while the initial values 
of yi form 16 different arrangements of positive and negative square-roots of y:. 
For each solution we have averaged the values of y; from the sixteenth to the 
twenty-third time step; the central time is therefore t = 2-34. Figure 4 shows the 
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FIGURE 5. Spectrum averaged from t = 1.92 t o  t = 2.76 and averaged over 16 solutions 
of the very low order equations with co = + (solid circles), and spectrum averaged from 
t = 1.92 to  t = 2.80 and averaged over 16 solutions of the very low order equations with 
c o  = $ (thin solid curve), compared with spectrum at t = 2.32 (heavy solid curve) and 
linear-decay spectrum at t = 2.32 (dotted curve) taken from figure 3. 

16 average values of yi so obtained, forj  = 1, . . . , 7 ,  and also the accurate spectrum 
at t = 2.32 for comparison. There is great variation from one solution to another, 
in some instances by a factor of 100. Nevertheless, any reasonable method of 
averaging the 16 solutions together would produce a spectrum, over the wave- 
numbers appearing in figure 4, showing general agreement with the accurate 
spectrum, although with too strong a peak a t  a wavenumber of 4. 

The arithmetic average of the 16 spectra is represented by the solid circles in 
figure 5, where it is compared with the accurate spectrum and the linear-decay 
spectrum a t  t = 2-32, taken from figure 3 (and drawn on a fourth-root instead of 
a logarithmic scale to facilitate comparison over all wavenumbers). It is evident 
that the very low order model has captured the effects of the nonlinear processes, 
qualitatively. Nearly all the circles lie on the proper side of the linear-decay 
spectrum. However, there are obvious quantitative shortcomings. In  general the 
nonlinear effects are underestimated; it is as if the circles were an interpolation 
between the linear-decay spectrum and the accurate spectrum. 

The principal failing is a t  the small scales, where our spectrum is too low by a 
factor of nearly 10 at  a wavenumber of 16 and nearly 100 at  a wavenumber of 22. 
This failing is readily accounted for, however, and could have been anticipated. 

In  the accurate solution, when t = 2.32, the enstrophy in the high wavenumbers 
is decreasing only slowly with time, the rapid viscous decay being nearly, but not 
quite, balanced by the nonlinear transfer of enstrophy from lower wavenumbers. 
In  the very low order model (but not in the general low order model) the nonlinear 
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interactions are all local in wavenumber space; that is, they involve only adjacent 
scales. In  particular, the only nonlinear term in (54) affecting ylo is 2c0y8yg. It is 
evident that if ys, yg and ylo temporarily assumed orders of magnitude demanded 
bytheaccuratesolution, sayy8 = 0.4,y9 = 0-2andylO = 0.1, thegaininenstrophy 
in the smallest scale, namely 2c0y8y,ylO = 0-006, would be far less than the 
dissipation of enstrophy, 210~D-~y7, = 0.1, and the proper magnitude would not 
persist. Similar considerations apply to the maintenance of enstrophy in scales 8 
and 9, although the imbalance islessextreme. It followsalso fromsimilarreasoning 
that in the accurate solution the enstrophy dissipation in the smallest scales must 
be balanced mainly by interactions which are not local in wavenumber space. 
Hence a model in which all the interactions are local will not produce an adequate 
spectrum in scales at the high wavenumber end of the dissipation range. 

At some of the remaining wavenumbers the discrepancy between our spectrum 
and the accurate spectrum is insignificant, but it is especially noticeable at scale 4, 
where it exceeds a factor of two. The general conclusion is that the nonlinear 
effects in theverylow order model are qualitatively correct, butnotstrongenough. 

The immediate suggestion is that we might improve the model by intensifying 
the nonlinear effects. One obvious procedure which might accomplish this end 
would be to use a larger constant co. We can justify such a change by noting that 
the constant a in (37), which we took to be 4, could be increased on the grounds 
that the effects of the separate triples of scales containing interactions may 
combine more or less systematically, even though the separate interactions 
within a triple do not. 

Accordingly, we have doubled the value of co, to 2, which corresponds to 
a = 0.85, and we have obtained 16 more solutions, using the same 16 sets of 
initial conditions as before, but reducing the time increment At to 0.06 to avoid 
excess computational error. The spectrum averaged over time steps 32 to 47 
(average time t = 2.37) and over all 16 solutions appears in figure 5 as the thin solid 
curve. We see that there is appreciable improvement a t  nearly every scale, but 
that perfectionis yet to be reached. At the smallest scales, where the improvement 
is greatest, the room for further improvement is also greatest. For good measure 
we also obtained 16 solutions with co = 1, which corresponds approximately to 
a = 1, the largest allowable value. There was no appreciable difference between 
these results and those obtained with co = 2. 

We conclude that the very low order model is capable of yielding a qualitatively 
correct representation of the nonlinear effects. Quantitatively the effects are 
fairly well represented, although somewhat underestimated, except in scales at 
the high wavenumber end of the dissipation range, where the very low order 
model, or any other model in which the interactions are local in wavenumber 
space, is incapable if producing an accurate spectrum. 

6.  Concluding remarks 
Even though the low order equations entail a considerable number of approxi- 

mations, they nevertheless retain some of the features of the equations governing 
two-dimensional turbulence. Like the latter equations, the former describe the 
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behaviour of a collection of nonlinearly coupled dependent variables, and these 
variables represent features of widely differing scales. 

The identification of the separate variables with separate scales of motion is 
not just a matter of labelling. First of all, the smaller scales are subject to much 
greater viscous dissipation than the larger ones. More important, however, the 
coefficients in the nonlinear terms are such that in the absence of external forcing 
and viscous dissipation the equations possess two distinct quadratic invariants, 
representing kinetic energy and enstrophy, with the larger scales contributing 
much more heavily to the kinetic energy than to the enstrophy, while the opposite 
is true for the smaller scales. 

It may therefore be anticipated that individual solutions of the low order 
equations will exhibit many of the properties of two-dimensional turbulence, 
although certainly not all. The very low order equations, whose solutions we 
compared with a more conventional numerical simulation, appear capable of 
producing reasonably accurate spectra of decaying turbulence, except a t  rather 
high wavenumbers. 

Meanwhile, restricted collections of vectors possessing reasonably many inter- 
actions are not limited to the one used in the very low order model, and the 
advantages of less drastic simplifications should be considered. One shortcoming 
of the very low order model was seen to be the local character of the interactions. 
The equations cannot describe such processes as the conveyance of small- 
scale details by large-scale currents. Another perhaps equally serious fault is 
that the model effectively leaves too many tasks to be accomplished by too few 
variables. 

As a first step in remedying this situation we might, for example, let the subset 
Ri contain the four vectors corresponding to i"zj, deiined as in the very low order 
model, and the additional four vectors imwj, where wi = (1  + i) xi -1 .  The vectors 
then form eight spirals in wave-vector space, and it is easily verified that whereas 
there are twice as many variables as in the very low order model, there are five 
times as many interactions, some of which are less local. The retention of still 
more vectors might further improve the situation. 

It remains to be seen whether low order models containing some non-local 
interactions can produce correct spectra even a t  very small scales, and whether 
any low order models can produce reasonable spectra of developing or stationary 
turbulence as well as decaying turbulence. Nevertheless, our experience with the 
very low order model must be considered encouraging. 

During the development of these ideas the writer has benefited from a number 
of discussions with Dr C. E. Leith, Dr D. K. Lilly and Dr S. A. Orszag. The writer 
is grateful to Dr D. G. Fox for supplying him with the results of several numerical 
simulations. This work has been supported by the Atmospheric Sciences Section, 
National Science Foundation, under NSF Grants GA-10276 and GA-28203X. 
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